a relative extending module and torsion precovers

نویسندگان

m. kemal berktas

s. dogruoz

چکیده

we first characterize $tau$-complemented modules with relative (pre)-covers. we also introduce an extending module relative to $tau$-pure submodules on a hereditary torsion theory $tau$ and give its relationship with $tau$-complemented modules.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A relative extending module and torsion precovers

We first characterize $tau$-complemented modules with relative (pre)-covers. We also introduce an extending module relative to $tau$-pure submodules on a hereditary torsion theory $tau$ and give its relationship with $tau$-complemented modules.

متن کامل

Torsion Z-module and Torsion-free Z-module

In this article, we formalize a torsion Z-module and a torsionfree Z-module. Especially, we prove formally that finitely generated torsion-free Z-modules are finite rank free. We also formalize properties related to rank of finite rank free Z-modules. The notion of Z-module is necessary for solving lattice problems, LLL (Lenstra, Lenstra, and Lovász) base reduction algorithm [20], cryptographic...

متن کامل

Ranks of modules relative to a torsion theory

Relative to a hereditary torsion theory $tau$ we introduce a dimension for a module $M$, called {em $tau$-rank of} $M$, which coincides with the reduced rank of $M$ whenever $tau$ is the Goldie torsion theory. It is shown that the $tau$-rank of $M$ is measured by the length of certain decompositions of the $tau$-injective hull of $M$. Moreover, some relations between the $tau$-rank of $M$ and c...

متن کامل

Torsion Z-module and Torsion-free Z-module1

In this article, we formalize a torsion Z-module and a torsionfree Z-module. Especially, we prove formally that finitely generated torsion-free Z-modules are finite rank free. We also formalize properties related to rank of finite rank free Z-modules. The notion of Z-module is necessary for solving lattice problems, LLL (Lenstra, Lenstra, and Lovász) base reduction algorithm [20], cryptographic...

متن کامل

Torsion Part of Z-module

In this article, we formalize in Mizar [7] the definition of “torsion part” of Z-module and its properties. We show Z-module generated by the field of rational numbers as an example of torsion-free non free Z-modules. We also formalize the rank-nullity theorem over finite-rank free Z-modules (previously formalized in [1]). Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lo...

متن کامل

–supplemented Modules Relative to a Torsion Theory

Let R be ring and M a right R-module. This article introduces the concept of τ −⊕-supplemented modules as follows: Given a hereditary torsion theory in Mod-R with associated torsion functor τ we say that a module M is τ −⊕-supplemented when for every submodule N of M there exists a direct summand K of M such that M = N +K and N ∩K is τ−torsion, and M is called completely τ −⊕-supplemented if ev...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

ناشر: iranian mathematical society (ims)

ISSN 1017-060X

دوره 41

شماره 5 2015

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023